
 

 

 

API Usage Guidelines 
 

 

1. Introduction and Overview 

 

4Five Labs’s API can support a range of applications like classification and question-

answering. While we expect that the API will mostly create benefits for customers and end 

users, it also creates safety risks that are important to characterize and mitigate. 

 
This document begins with general context on how to think about safe use of systems like the API, 

then enumerates several specific safety issues to consider, provides general guidance on risk 

mitigation, and provides more detailed guidance on robustness and fairness in particular. 

 
Please contact us at hello@4fivelabs.com with any questions or feedback on these 
safety guidelines. 

 

2. Safety Challenges for High-Bandwidth, Open-Ended ML Systems 

 

A common definition for safety of non-AI technologies is “Freedom from those conditions 

that can cause death, injury, occupational illness, damage to or loss of equipment or 

property, or damage to the environment.”1 For the API, we adopt an amended, broader 

version of this definition: 

 
Freedom from those conditions that can cause physical, psychological, or social harm 

to people, including but not limited to death, injury, illness, distress, misinformation, or 

radicalization, damage to or loss of equipment or property, or damage to the 

environment. 

 
Our guidance for API safety is informed by considerations particular to systems with machine 

learning (ML) components that can have high-bandwidth, open-ended interactions with 

people (e.g. via natural language). 

 
● ML components have limited robustness. ML components can only be expected to 

provide reasonable outputs when given inputs similar to the ones present in the training 

data. Even if an ML system is considered safe when operated under conditions similar 

to training data, human operators can provide unfamiliar inputs that put the system into 

an unsafe state, and it is often not obvious to an operator what inputs will or won’t lead 

to unsafe behavior. Open-ended ML systems that interact with human operators in the  
 
 
1 NPR 8715.3C and MIL-STD-882D 



 

 

general public (e.g. in a question-answering application) are also potentially susceptible 

to adversarial inputs from malicious operators who deliberately try to put the system 

into an undesired state.  
● ML components are biased. ML components reflect the values and biases present in 

the training data, and systems using ML components—especially systems that interact 

with people in open-ended ways—can perpetuate or amplify those values. Safety 

concerns arise when the values embedded into ML systems are harmful to individuals, 

groups of people, or important institutions. For ML components like the API that are 

trained on massive amounts of value-laden training data collected from public sources, 

the scale of the training data and complex social factors make it impossible to 

completely excise harmful values.  
● Open-ended systems have large surface areas for risk. Systems that have high-

bandwidth interactions with end users, like natural language dialogue or question-

answering, can be used for virtually any purpose. This makes it impossible to 

exhaustively enumerate and mitigate all potential safety risks in advance. Instead, we 

recommend an approach focused on considering broad categories of potential harm, 

continuous detection and response for incidents of harm, and continuous integration 

of new mitigations as needs become apparent.  
● Safety is a moving target for ML systems. The safety characteristics of ML systems 

change every time the ML components are updated, for example if they are retrained 

with new data, or if new components are trained from scratch with novel architectures. 

Since ML is an area of active research and new levels of performance are routinely 

unlocked as research advances, ML system designers should count on frequent 

updates to the ML components and make plans to perform continuous safety analysis. 

 

3. Harms to Consider in Risk Analysis 

 

Below, we give examples of potential harms (or paths to harm) that may arise in systems 

involving the API as a component. Notably: this list is non-exhaustive, and not every 

category will apply to every system that uses the API. Additionally, these harms vary in terms 

of their likelihood, severity, and potential scale. Likelihood, severity, and scale are critical 

variables when assessing the overall seriousness of a particular safety risk and informing 

appropriate mitigations. 

 

● Frustration. The system generates frustration on the part of a user by giving 
unhelpful responses or voicing an opinion on a hot-button issue. 

● Perpetuating discriminatory attitudes. The system persuades users to believe 
harmful things about groups of people, e.g. by using racist or sexist language. 

● Providing false information. The system presents false information to users on 
matters that are safety-critical or health-critical, e.g. giving an incorrect response to a 
user asking whether they are experiencing a medical emergency and should seek care. 



 

 

● Individual distress. The system creates outputs that are distressing to an 
individual, e.g. by encouraging self-destructive behavior (like gambling, substance 
abuse, or self-harm) or damaging their self-esteem.  

● Incitement to violence. The system persuades users to engage in violent 
behavior against any other person or group.  

● Physical injury, property damage, or environment damage (in systems with 

physical actuators). If a system using the API is connected to physical actuators 
with the potential to cause harm, the system is safety-critical, and physically 

damaging failures could result from unanticipated behavior in the API. 

 

4. General Guidance on Risk Mitigation 

 

In this section, we give general guidelines for mitigating potential risks from API usage. We 

focus on guidance that is most relevant to production settings, i.e. where the scale of impacts 

of a system (both positive and negative) will be greater than in research/prototyping phases. 

Sections 5 and 6 below zoom in on safety issues related to robustness and fairness. 

 

● Test regularly and adversarially. Develop use-case specific tests for risks you identify 

as plausible in the context of your application. Make use of both manual and automated 

tests where applicable. Probe your model in an adversarial fashion--i.e. attempt to 

create inputs that would cause the model to fail, because if you discover them before 

your users do you can put up a safeguard before the system goes live.  
● Be transparent about limitations. Carefully modulate the trust that end users have in 

outputs from your system (e.g. via disclosing that outputs might be inaccurate or 
offensive). Clarifying the precise extent of automation involved in a particular 

application can also help calibrate users on what to expect.2  
● Leverage user feedback. Create scalable mechanisms to get feedback from end 

users regarding the quality and impact of outputs. 
● Choose use cases carefully. Avoid use cases which would require a higher degree 

of reliability than is attainable with language models (e.g. safety-critical applications). 
● Monitor operation. Maintain awareness of your system’s performance characteristics 

over time, through automated and manual approaches, especially after any changes to 
the underlying language model or other components of your pipeline.  

● Consider/test the full stack. If your application has multiple interacting ML 

components, make sure you test your application on the distribution of inputs that will 

actually be seen during operation. For example, suppose you have an ML module that 

translates a request from an end user into a query that goes to the API. If you test the 

API on a bunch of queries generated directly by end users (and not by the 

intermediate ML module you use in production), a passing grade for the component on 

that distribution doesn’t mean the composed system would be safe.  

 

2 For a recently proposed framework for describing levels of automation in language generation, see: 
https://arxiv.org/abs/2006.06295 

https://arxiv.org/abs/2006.06295


 

 

● Consider malicious uses. Customers should consider ways in which their application 

might be deliberately misused and take efforts to mitigate any such risks. Exposure to 

malicious use will vary across use cases. Examples of potential risks include users 

deliberately triggering offensive text that could be seen by others, users poisoning the 

system’s training data by submitting false user feedback or offensive inputs, and users 

leveraging a platform to generate spam or disinformation. If significant misuse risks are 

identified, customers should take steps to mitigate them--for example, by monitoring 

for anomalous usage patterns or establishing rate limits for end users. 

 

5. Guidance on Robustness 

 

“Robustness” here refers to a system reliably working as intended and expected in a given 

context. API customers should make reasonable efforts to ensure that their application is 

as robust as required for safe use and should ensure that such robustness is maintained 

over time. 

 

Robustness is challenging. Language models such as those included in the API are useful 

for a range of purposes but can fail in unexpected ways due to limited world knowledge. These 

failures might be visible, such as generation of irrelevant or obviously incorrect text, or invisible, 

such as failing to find a relevant result when using API-powered search. The risks associated 

with using the API will vary substantially across use cases, though some general categories to 

consider include: generation of text that is irrelevant to the context (providing more context will 

make this less likely); generation of inaccurate text due to a gap in the API’s world knowledge; 

continuation of a context that is offensive; and inaccurate classification of text. 

 

Context matters a lot. Customers should bear in mind that because the models underlying the 

API attempt to guess should come next in a sequence of text, API outputs are heavily 

dependent on the context provided to the model. Providing additional context to the model 

(such as by giving a few high-quality examples of desired behavior prior to the new input) can 

make it easier to steer model outputs in desired directions. 

 

Spot robustness issues prior to deployment. Customers should manually evaluate model 
outputs for each use case being considered, with those outputs being generated over a range 
of representative inputs as well as some adversarial inputs. 

 

Encourage human oversight. Even with substantial efforts to increase robustness, 
some failures will likely still occur. As such, API customers should encourage human 
scrutiny of outputs in order to prevent excessive deference to model outputs. 

 

Keep testing. One way in which the API might not perform as intended, despite initially 
promising performance, is if the input distribution shifts over time. Additionally, 4Five Labs may 



 

 

provide improved versions of models over time, and customers should ensure that 

such versions continue to perform well in a given context. 

 

6. Guidance on Fairness 
 

 

“Fairness” here means ensuring that the API does not either have degraded performance 

for users based on their demographics or produce text that is prejudiced against certain 

demographic groups. API customers should take reasonable steps to identify and reduce 
foreseeable harms associated with demographic biases in the API. 

 

Fairness is very challenging. Due to the API being trained on human data, our models exhibit 

various biases, including but not limited to biases related to gender, race, and religion. For 

example: the API is trained largely on text in the English language, and is best suited for 

classifying, searching, summarizing, or generating such text. The API will by default perform 

worse on inputs that are different from the data distribution it is trained on, including non-

English languages as well as specific dialects of English that are not as well-represented in our 

training data. 4Five Labs will provide customers a baseline analysis of some biases we have 

found, though such analysis is not comprehensive; customers should consider fairness issues 

that may be especially salient in the context of their use case, even if they are not discussed in 

our baseline analysis. Note that context matters greatly here: providing the API with insufficient 

context to guide its generations, or providing it with context that relates to sensitive topics, will 

make offensive outputs more likely. 

 

Characterize fairness risks before deployment. Users should consider their customer base 

and the range of inputs that they will be using with the API, and should evaluate the 

performance of the API on a wide range of potential inputs in order to identify cases where 

the API’s performance might drop. 

 

Block listing and detection tools can help but aren’t panaceas. 4Five Labs will provide a 

provisional blocklist (list of terms that the API will be blocked from outputting) and a detection 

tool aimed at flagging potentially sensitive inputs or outputs. These tools are intended to help 

customers mitigate the risks of offensive outputs. Customers should consider whether their 

use case calls for the use of such techniques, and if so, how they might be modified to best fit 

their use case (e.g. trading off false positives and false negatives). Customers should bear in 

mind that these tools are not a panacea for eliminating all potentially offensive outputs--

offensive outputs using other “safe” words may still be generated, and legitimate outputs might 

be blocked.3 
 

 

3 A recognized challenge with toxicity detection tools is that they can sometimes have the unintended effect of 
silencing already marginalized voices, further demonstrating the need for use-case-specific assessment in the use 
of such tools.https://homes.cs.washington.edu/~msap/pdfs/sap2019risk.pdfOne potential way of addressing such 
tradeoffs (for some applications) is having blocklisting and detection activated as a default but toggleable by users. 

https://homes.cs.washington.edu/~msap/pdfs/sap2019risk.pdf

